
Heterogeneity Aware P2P Algorithm by Using Mobile
nodeID

Kyungbaek Kim and Daeyeon Park

Department of Electrical Engineering & Computer Science,
Division of Electrical Engineering,

Korea Advanced Institute of Science and Technology (KAIST),
373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea
kbkim@sslab.kaist.ac.kr, daeyeon@ee.kaist.ac.kr

Abstract. The peer-to-peer systems have become an extremely popular platform
for large-scale content sharing. A lot of research papers discussed the Distributed
Hash Table (DHT) based p2p algorithms to promise that idle resources may be
efficiently harvested. However, p2p systems are composed of components with
extremely heterogeneous availabilities and for nodes which join/leave the system
frequently, the system will generate a lot of information maintenance traffic such
as routing information update traffic and data copy traffic to keep the efficiency
of the DHT based p2p algorithms.

In this paper, we suggest the mobile nodeID based p2p algorithm to reduce
the overhead by exploiting the heterogeneity of participant nodes efficiently. Un-
like the DHT based p2p algorithms, the nodeID of a node changes according to
its characteristic to support the p2p system efficiency and each nodes takes the
different responsibility in accordance with its nodeID. We classify nodes into the
two types according to the characteristics of nodes : the reliable nodes and the leaf
nodes. The reliable node which is the more stable and more reliable node acts as
the more important role of the routing and the replication. The leaf node which
joins/leaves very frequently acts as the simple role to minimize the information
maintenance traffic. The reliable node has the load-balanced ID to balance the
loads and the leaf node has the load-free ID to reduce the responsibility.

We examine the efficiency of our p2p algorithm via a event driven simulation
and show that the information maintenance traffic reduces and the routing process
is more efficient.

Keywords: peer-to-peer, algorithm, mobile nodeID, heterogeneity.

1 Introduction

In these days, peer-to-peer systems have become an extremely popular platform for
large-scale content sharing. Unlike client/server model based storage systems, which
centralized the management of data in a few highly reliable servers, peer-to-peer stor-
age systems distribute the burden of data storage and communications among tens of
thousands of clients. The wide-spread attraction of this model arises from the promise
that idle resources may be efficiently harvested to provide scalable storage services. A
lot of research papers discussed the Distributed Hash Table (DHT) based p2p routing
algorithms (Chord, Pastry, Tapestry and CAN) [2][3][4][5].

I. Chong and K. Kawahara (Eds.): ICOIN 2006, LNCS 3961, pp. 975–984, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

976 K. Kim and D. Park

In contrast to traditional systems, peer-to-peer systems are composed of components
with extremely heterogeneous availabilities - individually administered host PCs may
be turned on and off, join and leave the system and have intermittent connectivity,
and are constructed from low-cost low reliability components. For example, one re-
cent study[6] of a popular peer-to-peer file sharing system found that the majority of
peers had application-level availability rates of under 20 percent and only 20 percent
nodes have server-like profiles. In such an environment, failure is no longer an excep-
tional event, but is a pervasive condition. At any point in time the majority of hosts in
the system are unavailable and those hosts that are available may soon stop servicing
requests.

A big issue in current DHT based p2p algorithms is the high overhead of maintaining
DHT routing data structure and the stored data. When a node joins/leaves the system,
the affected routing data structure on some existing nodes must be updated accordingly
to reflect the change. Moreover, most p2p systems employ some form of the data redun-
dancy to cope with failure and when the membership of nodes changes, these systems
generate huge overhead of compulsory copies for the data availability. Especially, for
nodes which join/leave the systems frequently, the p2p system will generate a lot of
routing information update traffic and data copy traffic. It does not only increase the
consumption of the network bandwidth, but also affects the efficiency of DHT based
routing algorithms. Until now, DHT algorithms are not widely used in commercial sys-
tems yet, most p2p file sharing systems are still using non structured p2p mechanisms.

In this paper, we suggest the mobile nodeID based p2p algorithm to reduce the in-
formation maintenance overhead by exploiting the heterogeneity of participant nodes
efficiently. Unlike the DHT based p2p algorithms, the nodeID of a node changes ac-
cording to its characteristic to support the p2p system efficiency and each node takes
the different responsibility in accordance with its nodeID. We classify nodes into the
two types according to the characteristics of nodes : the reliable nodes and the leaf
nodes. The reliable node which is the more stable and more reliable node acts as the
more important role of the routing and the replication. The leaf node which joins/leaves
very frequently acts as the simple role to minimize the information maintenance traffic.
The reliable node has the load-balanced ID to balance the loads and the leaf nodes has
the load-free ID to reduce the responsibility.

The reliable nodes are more stable and more reliable nodes and these nodes act as
more important roles such as routing and replication. The reliable nodes have Load
Balanced ID (LBID) which is evenly distributed and balances the workload of each
reliable node. This LBID is dynamically assigned and the LBID routing table which
helps for routing to any reliable nodes is also organized when the LBID is assigned. The
leaf nodes join/leave very frequently on the system and the majority of the participant
nodes are these leaf nodes. These nodes act as simple roles such as servicing the request
and helping the reliable nodes. The leaf nodes have Load Free ID (LFID) which makes
the ID region of a leaf node as small as possible and reduces the effect of the dynamic
membership change which increases the information maintenance overhead. According
to these basic behaviors, because the frequently joining/leaving of nodes occurs as the
leaf nodes which make little overhead, we can reduce the overhead of the whole p2p
system and achieve more efficient routing without the frequent updates.

Heterogeneity Aware P2P Algorithm by Using Mobile nodeID 977

Fig. 1. Overview for the general DHT based P2P algorithm

This paper is organized as follow. In section 2, we describe the DHT based p2p
algorithm and its problem. Section 3 introduces the detail of the mobile nodeID based
p2p algorithm. The simulation environment and performance evaluation are given in
section 4. Finally conclude in section 5.

2 Background

There are many DHT based p2p algorithms such as Chord, Pastry, Tapestry and CAN
[2][3][4][5]. Each node has a DHT which is a small routing table and any node can be
reached in about O(logN) routing hops where the N is the total number of nodes in
the system. To achieve this efficient and bounded routing, there are some rules for the
organizing the participant nodes. First of all, each node has a unique nodeID which is
taken by hashing any identifier of a node, and according to its nodeID it maps on the
ID space where the nodes and the objects are co-located with the nodeIDs or the keys
which are the hashed values of the nodes or the objects. In the figure 1, the node id of
node A is 3 and it maps on the position for 3. After the mapping of the node id, each
node knows its ID region from the next position of its previous nodeID to its nodeID
and each node should store and service the objects for its ID region. In the figure 1,
node A takes its ID region from 1 to 3 because its node id is 3 and its previous node
B locates on 0 and when a node wants to get a.mp3 whose key is 2, node A gets the
request for it.

Though these well-organized rules make the routing of the p2p system efficient and
bounded, a big issue in current DHT based p2p algorithms is the high information
maintenance overhead of maintaining DHT routing data structure and the stored data.
Because its node id is already given by the hashing function and its position on ID space
is already fixed, when a node joins/leaves the p2p system, the ID region of its neighbor
nodes changes and the stored data should be copies for the new ID region to service the
right and reliable object, and the update of the routing table is also needed. In figure 1,
if node A leaves, the ID region of node D changes and the object from 1 to 3 should
be copied from node A to node D. Moreover, the affected routing table which has the
entry with node A must be updated. In this case, one recent research[6] of a popular p2p
file sharing system found that 80 percent of total nodes of a p2p system join/leave very

978 K. Kim and D. Park

Fig. 2. Overview of Mobile nodeID based P2P Algorithm

frequently and the majority of nodes have the application-level availability rate of under
20 percent. In such an environment, the information maintenance overhead is getting
worse and this overhead discourages that the DHT based p2p systems are deployed to
the real world.

3 Mobile nodeID Based P2P Algorithm

3.1 Overview

Previous DHT based p2p algorithms lack the explicit methods for exploiting the hetero-
geneous characteristics of participant nodes. The main reason of this lack is the static
nodeID which makes the location of a node fixed on the ID space, and the system
with the static nodeID is not flexible. We address this problem with the mobile nodeID
which changes according to the characteristics of a node. We classify the participant
nodes into two types : reliable nodes and leaf nodes. The reliable nodes are more reli-
able and more stable nodes and the leaf nodes join/leave very frequently. The nodeID of
a reliable node is well distributed on the ID space and makes that the each reliable node
gets fair ID region and balanced loads. The leaf node gets the node id which makes its
ID region as small as possible to minimize the information maintenance overhead for
joining/leaving of it.

Figure 2 shows the overview of the p2p system that uses the mobile nodeID based
p2p algorithm. The participant nodes are on the 25 ID space and the number of bits
for a nodeID is 5. The nodeID is consist of the Load-Balanced ID (LBID) and the
Load-Free ID (LFID) and ,in this example, the first 2 bits of a nodeID mean the LBID
and the other 3 bits are for the LFID. In this figure, the large sized computer means
the reliable node and the small sized computer means the leaf node. To distribute the
participant nodes efficiently, we divide the ID space into many sub-regions which are
the balanced ID regions. Each sub-region has one reliable node which represents this
region and many leaf nodes which assist the reliable node. That is, the reliable node
is mainly responsible for the objects for the sub-region and the leaf nodes service the
objects for the small ID region which is assigned by both of their node id and the LFID

Heterogeneity Aware P2P Algorithm by Using Mobile nodeID 979

Fig. 3. Basic algorithm of the LBID assignment

table on behalf of the reliable node. For example, when a node wants to get an object
whose key is 00001, the reliable node B takes the request, however when a node tries
to get an object with 00010, the leaf node R takes the request to assist the reliable node,
because the ID region of node R is from 00010, the start of the LFID slot to 00011, its
nodeID. All nodes on the same sub-region have the same LBID and they are identified
by the LFID. The all bits of LFID for the reliable node are set to 1 and the LFIDs of
other leaf nodes change according to the behaviors of them.

The LBID table and the LFID table are used to lookup the location of a node or an
object. When a node joins, we get its static nodeID by hashing its identifier. The first
thing is to route to the right sub-region according to the LBID table. In this case, a
node which gets a join request forwards it to the next node which is the node of the
most prefix matched entry of the LBID table. After finding the sub-region, the LFID
table assigns the right LFID to the new node. This join process is only for the leaf
nodes and in the next section, we show the detail of the whole join process. Moreover,
when a node tries to lookup an object, it sends a lookup request with the object key
which is its hashed value to any other participant node. Like the case of the join pro-
cess, it forwards to the right sub-region by the LBID tables and find the node whose
ID region is responsible for the key by the LFID tables. Basically, we use the hashed
values of both of nodes and objects, but they are used only for finding the location
of them. When the nodes join to the p2p system, their ids are newly assigned by the
p2p system and change according to its characteristics for the nodes to be locate on fit
places.

3.2 Mobile nodeID

Load Balanced ID is the identifier for the reliable node. Each reliable node is assigned
this LBID and it is responsible for storing and servicing the request for the fair and
balance ID region. For this, the LBID is well distributed and evenly divided. More-
over, because there is no routing information, we need LBID routing table which helps
routing to any reliable nodes.

980 K. Kim and D. Park

Fig. 4. LBID Routing Table of node E and finalization rule

This LBID is assigned after a node finds the any reliable nodes. If there are not
enough reliable nodes, a new node is assigned the LBID and acts as the reliable node
without any relation of its real characteristics. A new reliable node is assigned the right
LBID and create the LBID routing table according to its LBID. Each reliable node has
the state information such as Join, Level, Full and Leaf. When the Join bit sets to 1, this
node can process the join request and create new LBID for the new node. The Level bit
is the depth value which means how many join requests is processed in this node, that
is, how many routing entries are filled. The Full bit sets to 1 after the enough reliable
nodes join the p2p system and they are ready to get the leaf nodes. The Leaf bit means
the number of leaf nodes which is connected to a reliable node. According to these state
information, LBID is assigned automatically and correctly.

The basic algorithm for the LBID assignment is in figure 3. When a node joins to
the system and there is no reliable node, the new node has the new LBID whose all bits
set to 1. Otherwise, when any reliable node gets a join request, it creates new LBID
based on the two information which are its LBID and the Level bit. That is, the levelth
bit of LBID sets to the exclusive bit and this is the new LBID. This simple rule makes
the difference of LBID of any two closest reliable nodes even and each reliable node
gets the balanced and fair ID region. The LBID routing table which is used for routing
to any reliable nodes is also organized when the new LBID is created. The basic rule
is the Nth entry of the routing table has the node information whose Nth bit of LBID
is exclusive to the owner’s LBID. In figure 4, the node whose LBID is 001 has the
LBID routing table whose 1st entry has the information for the node C whose LBID
is 101 and 2nd entry has the information for the node B whose LBID is 011. These
bit-wise exclusive entries make the LBID routing table and any node can reach any
other nodes. This LBID routing table has logN of routing entries and the maximum
routing hops are limited to logN , where N is the number of LBID bits. When there
is not proper node information for a routing entry, we set the temporal routing entry.
This temporal routing entry has the node information which does not matched but clos-
est to the right node information. When the node which has the temporal routing entry
gets a join request, it forwards the join request to the temporal node which is ready
to process join request. After this forwarding process, the new node replaces the tem-
poral routing entry with right routing entry and the LBID routing table is composed
completely.

After the enough number of reliable nodes join, every reliable nodes should set the
Full bit to 1 and be ready to get leaf nodes. When a join request routes to the reliable
node by the LBID routing table and every node can not process the join request, the
last requested node knows that the reliable nodes are assigned fully and the finalize
mechanism should start. In this case, each node does not know the whole of the reliable

Heterogeneity Aware P2P Algorithm by Using Mobile nodeID 981

Fig. 5. LFID slot and its change according to the lifetime

nodes, but only knows the logN routing entries. According to this, one node can not
notify to all node and needs the efficient and systematic notification. To achieve this
notification, a node sends the notification with TTL count value to every nodes which
is on the routing table. Like figure 4, the notification to the Nth routing entry has N −1
TTL count value, except the 1st entry whose notification has 1 TTL value. The target
node which gets the notification reduces the TTL value by 1 and sends the notification
to the M − 1th routing entry, where M is the position of the target node on the routing
entry of the sending node. However, if the target node is 1st routing entry of the sending
node, it sends the last notification message to its last routing entry.

Load Free ID is the identifier of the leaf nodes. Because each leaf node is an unreli-
able node which joins/leaves very frequently, we should minimize the management cost
for the effect of the dynamic membership change by assigning little load to leaf nodes.
At first, LFID is close to 0 and when the access time of the leaf node increases, LFID
also increases for the node to get more load and help the p2p system.

A new node routes to a reliable node by the LBID of the unique node key. When the
Full bit of the reliable node is 1, this node processes the join request and increases the
number of the Leaf bit by 1. To help assigning LFID, every reliable node has the LFID
slot which divides the sub-region and each slot manages the leaf node information. The
figure 5 shows the LFID slot and its change according to time. When node L joins,
the first slot which is 00 slot assigns the LFID 00000 to node L. After time pass, the
LFID of node L changes to 00001 and new node M gets 01000 for the second slot
which is 01 slot, and so on. Each node is responsible for storing and requesting the data
for the id space from the LFID 000 to the current LFID for each slot. When the LFID
changes the data copy occurs, but this traffic is smaller than the management traffic
of previous DHT, because these leaf nodes are free for data availability. Though each
LFID increases according to the time, it can not increase more than the slot size.

4 Performance Evaluation

4.1 Simulation Setup

We make our p2p simulator which emulates the node behavior on the application layer.
We implement the previous DHT based p2p algorithms such as pastry and chord and
our mobile nodeID based p2p algorithm. We use 160 bit ID space to identify nodes
and the number of LBID bits changes according to the number of the representative
nodes which are assigned by the total number of the participant nodes. To make this
dynamic characteristic, we use poison distribution whose average is 4, and to assign
join/leave duration of a node, we use exponential distribution. According to this poison

982 K. Kim and D. Park

(a) Bandwidth Usage (b) Lookup Hops

Fig. 6. Comparison of the bandwidth usage and the lookup hops

distribution, the lifetime of 80% of total nodes is below 60% of total simulation time,
that is, only 20% of total nodes have the reliable server-like profile. Recent researches
[6] measure the life distribution of the p2p nodes and show the similar distribution, and
we can tell that this distribution is similar to the real world. This characteristics of nodes
are assigned when the nodes are created and by using the exponential distribution with
this characteristics, we can generate the on-time for which the nodes are on the p2p
system and the off-time for which the nodes are off.

In the next results, DHT means the DHT based p2p algorithms and MP2P-N means
the mobile nodeID based p2p algorithm in which the N percent nodes of total nodes
act as representative nodes. That is, MP2P-20 can have the sub-region twice as many as
MP2P-10. According to the number of the sub-region, the system makes up the bits of
LBID and the bits of LFID.

4.2 Bandwidth Usage

The main problem of the current DHT p2p is the high management cost. In the figure
6(a), we show how the mobile nodeID based p2p algorithm reduces the management
cost. To evaluate this cost, we assume that each node obtains same number of objects,
that is, if the total number of nodes is 100 and the total number of objects is 10000,
and if the total number of nodes is 200, the number of objects is 200000. In this case,
the our p2p algorithm reduces the data management cost extremely. The main reason
of this improvement is the behavior of leaf nodes. In DHT p2p, the frequent join/leave
of leaf nodes cause the compulsory copies and update cost for routing information.
However, in our p2p algorithm, the dynamic behavior of leaf nodes does not affect the
data availability and the routing efficiency. According to these, the MP2P can reduce
more management traffic. Moreover MP2P-10 reduces more traffic than MP2P-20. On
the same node characteristics, the MP2P-20 needs more reliable nodes than MP2P-
10, and the average availability of the reliable nodes of the MP2P-20 is less than the
MP2P-10. In the MP2P-20, the transitions for the reliable nodes occurs more than the
MP2P-10 and MP2P-20 exhausts more network bandwidth than MP2P-10. To prevent
this side effect, we need the adaptive method which manages the number of reliable
nodes according to the state of the nodes and this work is our ongoing job.

Heterogeneity Aware P2P Algorithm by Using Mobile nodeID 983

Fig. 7. Load distributions of whole participant nodes

4.3 Lookup Hops

In the p2p system, the lookup cost is also important parameter for the scalability because
there are too many participants. Figure 6(b) shows the comparison of the lookup hops.
For all algorithms, the lookup hops are proportion to the Log N, where N is the total
number of nodes. The mobile nodeID based p2p algorithm performs more efficient
lookup than normal DHT. The reason is that the our p2p algorithm uses the reliable
nodes to route the lookup request and the number of these nodes are much less than the
total nodes. These reliable nodes are more stable and more powerful than other nodes
and they are durable nodes for the many routing requests. Additionally, the leaf nodes
assist the reliable nodes to take the request for the ID region and the load of the reliable
node are reasonable.

4.4 Load Balance

The figure 7 shows the load distribution for the total nodes. In this figure, we define
the load of a node as the number of lookup requests of it divided by the average num-
ber of lookup requests of whole nodes. As the nature of the previous DHT based p2p
algorithm, the load is distributed to the whole of nodes by the shape of the normal
distribution and the average load of nodes is nearly 1. This behavior causes the heavy
information maintenance overhead because the nodes which join/leave very frequently
can be responsible for the big ID region. On the other hand, in our mobile nodeID based
p2p algorithm, the load distribution can be classified into the representative nodes and
the leaf nodes. About 75 percent of nodes have less load than other nodes because these
nodes act as leaf nodes which join/leave frequently and they takes the responsible for
small ID region which is assigned by the LFID. The average load of the leaf nodes are
about 0.4 and these nodes are distributed uniformly. Otherwise, the representative nodes
take much more load because they are alive for a long time and represent for the sub-
region. The average load of these nodes are about 2. This feature which classifies the
load according to nodes is very useful for the p2p system on the heterogeneous network
which is consist of the various nodes such as servers, workstations and PCs. Some p2p
approaches need the server-like components to increase the efficiency, and our algo-
rithm can exploit these components easily and efficiently because the server-like nodes
locates for the reliable nodes automatically.

984 K. Kim and D. Park

5 Conclusions

In this paper, we suggest the mobile nodeID based p2p algorithm to reduce the infor-
mation maintenance overhead by exploiting the heterogeneity of participant nodes effi-
ciently. Unlike the DHT based p2p algorithms, the nodeID of a node changes according
to its characteristic to support the p2p system efficiency and each node takes the differ-
ent responsibility in accordance with its nodeID. The reliable node which is the more
stable and more reliable node acts as the more important role of the routing and the
replication. The leaf node which joins/leaves very frequently acts as the simple role to
reduce the information maintenance traffic. The reliable node has the load-balanced ID
to balance the loads and the leaf nodes has the load-free ID to reduce the responsibil-
ity. This algorithm is very good for the p2p system on the heterogeneous environment
which is consist of the various kinds of nodes such as servers, workstations and PCs,
because it locates the server-like nodes at the positions for the reliable nodes and can
exploit these nodes efficiently. However, our algorithm may over-provision for the re-
liable nodes and this may decreases the performance of our algorithm. The adaptive
method for the whole state of nodes to keep the proper number of reliable nodes is our
ongoing job.

References

1. K.Kim and D.Park. Efficient and Scalable Client Clustering For Web Proxy Cache. IEICE
Transaction on Information and Systems, E86-D(9), September 2003.

2. I.Stoica, R.Morris, D.Karger, M.F.Kaashoek, and H.Balakrishnan. Chord: a scalable peer-to-
peer lookup service for internet applications. In Proceedings of ACM SIGCOMM 2001, August
2001.

3. A.Rowstron and P.Druschel. Pastry: scalable, decentralized object location and routing for
large-scale peer-to-peer systems. In Proceedings of the International Conference on Dis-
tributed Systems Platforms(Middleware), November 2001.

4. B.Y.Zhao, J.Kubiatowicz, and A.Joseph. Tapestry: An infrastructure for fault-tolerant wide-
area location and routing. UCB Technical Report UCB/CSD-01-114, 2001.

5. S.Ratnasamy, P.Francis, M.Handley, R.Karp, and S.Shenker. A scalable content-addressable
network. In Proceedings of ACM SIGCOMM 2001, 2001.

6. S. Saroiu et al. A measurement study of peer-to-peer file sharing systems. In Proceedings of
MMCN 2002, 2002.

7. R. Bhagwan, K. Tati, Y. Cheng, S. Savage and G. M. Voelker. Total Recall: System Support
for Automated Availability Management. In Proceedings of NSDI 2004, 2004.

	Introduction
	Background
	Mobile nodeID Based P2P Algorithm
	Overview
	Mobile nodeID

	Performance Evaluation
	Simulation Setup
	Bandwidth Usage
	Lookup Hops
	Load Balance

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

